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Tests for skin sensitization are required prior to the market

launch of new cosmetic ingredients. Significant efforts are made to

replace the current animal tests. It is widely recognized that this

cannot be accomplished with a single in vitro test, but that rather

the integration of results from different in vitro and in silico assays
will be needed for the prediction of the skin sensitization potential

of chemicals. This has been proposed as a theoretical scheme so

far, but no attempts have been made to use experimental data to

prove the validity of this concept. Here we thus try for the first

time to fill this widely cited concept with data. To this aim, we

integrate and report both novel and literature data on 116

chemicals of known skin sensitization potential on the following

parameters: (1) peptide reactivity as a surrogate for protein

binding, (2) induction of antioxidant/electrophile responsive

element dependent luciferase activity as a cell-based assay; (3)

Tissue Metabolism Simulator skin sensitization model in silico

prediction; and (4) calculated octanol-water partition coefficient.

The results of the in vitro assays were scaled into five classes from

0 to 4 to give an in vitro score and compared to the local lymph

node assay (LLNA) data, which were also scaled from 0 to 4

(nonsensitizer/weak/moderate/strong/extreme). Different ways of

evaluating these data have been assessed to rate the hazard of

chemicals (Cooper statistics) and to also scale their potency. With

the optimized model an overall accuracy for predicting sensitizers

of 87.9% was obtained. There is a linear correlation between the

LLNA score and the in vitro score. However, the correlation needs

further improvement as there is still a relatively high variation in

the in vitro score between chemicals belonging to the same

sensitization potency class.

Key Words: skin sensitization; in vitro testing; battery approach;

peptide reactivity; antioxidant response element; electrophile

response element.

The risk of skin sensitization is a critical issue in the

development of novel ingredients for cosmetic products. The

current skin sensitization testing is based on the local lymph

node assay (LLNA) in mice, in which the cellular proliferation

in the draining lymph nodes is measured after repeated topical

application of the test compound onto the ears (Basketter et al.,
2002; Gerberick et al., 2004a, 2007a). Results are expressed as

EC3 values indicating the % concentration which induces

a threefold increase in cellular proliferation. EC3 values can

then be used for risk assessment and for a classification of

chemicals into five classes (nonsensitizing/weak/moderate/

strong and extreme sensitizers). However, with the forthcoming

ban on animal testing for cosmetic ingredients in the European

Union and due to the large number of tests needed for the

REACH regulation on the registration of existing chemicals in

Europe, there is a pressing need for assays which make animal

testing obsolete.

Several alternative tests have been proposed and evaluated.

The most straightforward approach measures the reactivity of

test chemicals with peptides or proteins. This approach has

recently been reviewed extensively (Gerberick et al., 2008). It

is based on the rationale that the key step in the skin sen-

sitization process is the formation of a covalent adduct between

the skin sensitizer and endogenous proteins and/or peptides in

the skin. Indeed, using the % depletion of Cys- and Lys-

containing heptapeptides after 24 h incubation with a test

chemical as a predictor for skin sensitization, an overall

accuracy of 89% on a set of 81 chemicals was reported

(Gerberick et al., 2007b).

Another approach focuses on the stimulation of dendritic

cells, either primary cells (generated from precursor cells

obtained from peripheral blood) or cell lines such as THP-1 and

U-937. The expression of certain surface markers (especially

CD86) was found to be induced by sensitizers in these cell

types (Ade et al., 2006; Sakaguchi et al., 2006). A further

possibility is to measure the secretion of specific cytokines by

dendritic cells and keratinocytes. The cytokine that was most

frequently found to be upregulated in different cellular systems

is interleukin-8 (Aeby et al., 2004; Bergström et al., 2007;

Coquette et al., 2003). All these cell-based assays are very

promising, but data sets on large numbers of chemicals have

not been published so far. The most extensive dataset is found
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in the recent publication of Sakaguchi et al. (in press),

reporting data for 21 allergens and 8 nonallergens.

We have recently proposed a further approach which is

based on the stimulation of antioxidant response element

(ARE) dependent gene activity in a recombinant cell line

(Natsch and Emter, 2008). The ARE (also known as

electrophile response element) is a DNA element present in

many phase II detoxification genes. ARE-regulated genes had

been found to be upregulated by electophilic chemicals

(Dinkova-Kostova et al., 2005; Wakabayashi et al., 2004).

Skin sensitizers in general can be described as electrophilic

molecules (reviewed in Smith and Hotchkiss, 2001), and the

ARE-based assay offers a straightforward possibility to

measure electrophilicity in the cellular context. Moreover,

several cellular markers upregulated by sensitizers were shown

to be under the control of this regulatory pathway, most notably

the expression of IL-8 (Zhang et al., 2005) but also several

markers for skin sensitizers identified in the gene-chip and

reverse transcription–PCR studies by Ryan et al. (2004) and

Gildea et al. (2006). Thus this assay is functionally linked to

the molecular endpoints investigated in several other cell-based

assays. Finally, a recent publication of Kim et al. (2008) has

shown that this signaling pathway is involved in the

sensitization reaction in vivo, with Nrf2-deficient mice having

a reduced (but not abolished) sensitization reaction.

Several in silico models have also been explored to develop

structure-activity relationships for skin sensitizers, including

commercial mechanistically based models such as DEREK

(Sanderson and Earnshaw, 1991) and the Tissue Metabolism

Simulator (TIMES) software (Dimitrov et al, 2005). TIMES

comprises a skin sensitization model (TIMES SS) which

incorporates skin metabolism and considers the potential of

parent chemicals and/or their activated metabolites to react

with skin proteins. This model has been recently evaluated in

an external validation study which showed good concordance

(83%) between experimental and predicted values for 40 new

chemicals (Roberts et al, 2007a). Additional improvements are

still required, however, such developments, which use

a mechanistic basis for prediction, offer promising tools to

aid in the evaluation of skin sensitization potential.

As summarized above, a plethora of different in vitro and

in silico tests to examine the skin sensitization potential have

been proposed, and it is a general view held by many experts

that a single test cannot replace the current animal testing for

such a complex endpoint. This view has been formalized in

a proposal put forward by Jowsey et al. (2006) which has been

widely cited since then (26 citations by September 2008).

According to this proposal, for each chemical three in vitro
tests would be performed, namely (1) peptide reactivity, (2)

stimulation of dendritic cells, and (3) T-cell activation. The

results for each test would then be rated on a scale of 0–4.

A score of 1 or 2 would then additionally be given to each

chemical to score whether it has (1) a structural alert from

in silico predictions (yes/no) and (2) whether it has low or high

bioavailability. The scores of these five separate evaluations

would then be multiplied to give a final index of sensitization

potential (ISP).

Although widely cited, this model has not yet been filled

with data. A routine T-cell activation assay does not yet exist

and for each of the dendritic cell activation assays a large

dataset has not been published. Nevertheless, based on

currently published data and additional data generated in our

laboratory recently, a large dataset on peptide reactivity and

data from the cell-based assay depending on ARE-regulated

luciferase activity have been accumulated. The aim of the

current paper is twofold: First to report this full data set on 116

molecules for the two in vitro tests along with cLogP and

in silico predictions according to the TIMES SS model; and

then, based on this data compilation, to fill for the first time the

‘‘battery approach’’ proposal of Jowsey et al. (2006) with data,

in order to test the hypothesis that the results of different assays

can be integrated in a scheme such as the one proposed by

Jowsey et al. (2006). To this aim different ways of calculations

are explored for an optimized prediction of the skin sensitiza-

tion potential of chemicals based on these tests.

MATERIALS AND METHODS

Chemicals and animal data. All fragrance chemicals are commercial

qualities obtained from Givaudan Schweiz AG, Geneva, Switzerland. All other

test chemicals were purchased from Fluka/Sigma/Aldrich, Buchs, Switzerland.

The chemical and trivial names, the structures, along with CAS-numbers and

LLNA data of all the test chemicals are summarized in Table I in the supporting

information. Many of the chemicals used in this study are moderate to extreme

skin sensitizers, and skin contact with these undiluted chemicals should be

avoided. LLNA data have all been published previously. The literature

references for the original LLNA studies are added to Table SI in

the supporting information. The sensitization class in supplementary in-

formation Table SI is given based on the scheme of Kimber et al. (2003).

V. weak/none is indicated for chemicals with EC3 > 30% due to dataset

inadequacies (several chemicals considered nonsensitizers have not been tested

at > 25% to 50% in the LLNA).

Cell-based ARE assay. AREc32 is a stable cell line derived from the

human MCF7 breast carcinoma cell line. The generation of the cell line was

described by Wang et al. (2006) and the cell line has been licensed from CRX

biosciences, Dundee, UK. AREc32 cells were maintained, prepared for the test,

treated with chemicals and assayed for luciferase activity exactly as described

by Natsch and Emter (2008). The screening on the chemicals not contained in

the previous publication was repeated four times, with duplicate analysis for

each chemical at each test concentration in each repetition and with six binary

dilutions covering the maximal noncytotoxic doses for each test chemical.

Based on these experiments, for each test chemical (1) the average maximal

induction of gene activity (Imax; reported as fold-induction vs. untreated cells)

and (2) the average concentration inducing 1.5-fold enhanced gene activity (EC

1.5; reported in lM) were determined. The latter calculations were performed

with log-linear extrapolation from the values above and below the induction

threshold (as for the EC3 value determination in the LLNA and with the

formula described in Gerberick et al., 2007a). A chemical was rated positive, if

it induced significantly enhanced gene activity above the threshold at any of the

tested concentrations either in all repetitions made or in three out of four

repetitions. The literature data are based on three or four repetitions with

duplicate analysis in each repetition (Natsch and Emter, 2008).
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TABLE 1

Data Compilation of LLNA Results and In Vitro and In Silico Predictions

Test chemicals

LLNA data

Cys-depletion (%)

Luciferase induction

cLogP

TIMES SS modeling

EC3 (%) Class ARE EC 1.5 (lM) ARE Imax Prediction Training set?

Diphenylcyclopropenone 0.003 Extreme 98.8a 1 20.0 3.25 Yes Yes

Oxazolone 0.003 Extreme 75.8b 215 2.3 1.51 Yes Yes

5-Chloro-2-methyl-4-isothiazolin-3-one 0.009 Extreme 94.8b << 2 7.2 �0.34 Yes Yes

p-Benzochinone 0.01 Extreme 91.6b 2 19.6 0.25 Yes Yes

DNCB 0.04 Extreme 100a 1 12.3 2.14 Yes Yes

4-Nitrobenzylbromide 0.05 Extreme 96b 4.3 8.9 2.7 Yes Yes

1,4-Hydrochinone 0.1 Strong 83.3a 2 28.6 0.59 Yes Yes

Glutaraldehyde 0.1 Strong 30a 20 17.7 �0.18 Yes Yes

Fluorescein-5-isothiocyanate 0.14 Strong 100a 276 2.2 4.69 Yes Yes

Phthalic anhydride 0.16 Strong �1.9a > 1000 1.3 2.07 Yes Yes

1,4-Phenylenediamine 0.16 Strong 95.2b 12 12.7 �0.25 Yes Yes

Benzyl bromide 0.2 Strong 97.8c 68.4 9.6 2.9 Yes Yes

Lauryl gallate 0.3 Strong 91a 5 2.8 6.21 Yes Yes

Propyl gallate 0.32 Strong 62.2b 3 8.3 1.8 Yes Yes

2-Aminophenol 0.4 Strong 100b 2 23.3 0.6 Yes Yes

Trimellitic anhydride 0.6 Strong �1.1a > 1000 1.34 2 Yes Yes

Formaldehyde 0.7 Strong 56.5b 34 4.1 0.35 Yes Yes

Metol 0.78 Strong 100a 2 32.4 0.04 Yes No

Methyldibromo glutaronitrile 1.3 Moderate 75.8b 15.0 2.6 1.6 Yes Yes

1-Phenyl-1,2-propanedione 1.3 Moderate 92.1b 114 27.5 1.1 Yes Yes

1-Naphthol 1.3 Moderate 24.8a 16 2.4 2.69 No Yes

Glyoxal 1.4 Moderate 90.8b 192.0 4.2 �1 Yes Yes

2-Hydroxy-ethyl-acrylate 1.4 Moderate 89.4c 6 15.2 �0.25 Yes Yes

4-Vinyl-pyridine 1.6 Moderate 92a 3 13.8 1.7 Yes No

Pomarose 1.6 Moderate 100d 3 38.7 3.3 Yes No

2-Mercaptobenzothiazol 1.7 Moderate 100b 32 10.9 2.86 Yes Yes

Isoeugenol 1.8 Moderate 98.4b 18 60.2 2.1 Yes Yes

2-Methyl-2H-isothiazolin-3-one 1.9 Moderate 98a 3 12.5 �0.486 Yes Yes

Diethyl maleate 2.1 Moderate 100b 2 41.0 2.2 Yes Yes

Ethylenediamine 2.2 Moderate 15.9e > 1000 1.2 �2 Yes Yes

3-Dimethyl-amino-1-propylamine 2.2 Moderate 10a 156 5.4 �0.45 Yes Yes

Spirogalbanone 2.2 Moderate 99d 25 16.7 5.2 Yes No

1,2-Benzisothiazolin-3-one 2.3 Moderate 98a 2 6.6 0.64 Yes Yes

Methyl 2-nonynoate 2.5 Moderate 100a 1 19.5 3.1 Yes Yes

trans-2-Decenal 2.5 Moderate 100d 56 11.6 3.55 Yes Yes

trans-Anethole 2.7 Moderate 22d > 1000 0.93 3.39 No Yes

Benzyl salicylate 2.9 Moderate 0d 18 3.6 4 No Yes

Phenylacetaldehyde 3 Moderate 60.7a 48 9.8 1.54 Yes Yes

Galbanone 3 Moderate 76d 24 8.1 4.4 Yes No

Cinnamic aldehyde 3.1 Moderate 90.5b 19 31.6 2.12 Yes Yes

3-Aminophenol 3.2 Moderate 7a 69 5.0 0.18 Yes Yes

Diethyl sulfate 3.3 Moderate 24b > 1000 1.2 1.14 Yes Yes

2-Bromotetradecanoic acid 3.4 Moderate 29.3b 57.0 3.1 6.2 Yes Yes

Benzylideneacetone 3.7 Moderate 91.3b 9 27.5 2.04 Yes Yes

a-Methyl cinnamic aldehyde 4.5 Moderate 7.5d 47 23.3 2.37 Yes Yes

Citral 5 Moderate 34.7b 64 9.8 3 Yes Yes

Tetramethylthiuram disulfide 5.2 Moderate 99.4b 0.3 4.7 1.7 Yes Yes

trans-2-Hexenal 5.5 Moderate 97.7a 12 29.7 1.8 Yes Yes

3,4-Dihydrocoumarin 5.6 Moderate 4d > 1000 0.9 0.97 Yes Yes

Creosol 5.8 Moderate 15.4b > 1000 1.4 1.2 Yes Yes

Hydratropic aldehyde 6.3 Moderate 48.2a 121 2.3 1.96 Yes Yes

Cyclal C 6.5 Moderate 100d 227 8.0 3.1 Yes Yes

b-Damascone 6.7 Moderate 100d 1 26.7 4 Yes No

Dihydroeugenol 6.8 Moderate 1d 46 3.4 2.71 Yes Yes

Safranal 7.5 Moderate 100b 12 32.9 3.2 Yes Yes
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TABLE 1—Continued

Test chemicals

LLNA data

Cys-depletion (%)

Luciferase induction

cLogP

TIMES SS modeling

EC3 (%) Class ARE EC 1.5 (lM) ARE Imax Prediction Training set?

Perillaaldehyde 8.1 Moderate 31.9a 37 42.1 3.34 Yes Yes

Silvial 9 Moderate 100d 185 3.1 4.4 Yes No

NiSO4 False-neg. Weak 35.5c 310.2 5.3 n.a.f n.a. n.a.

Diacetyl 11 Weak 79.9b 125 4.8 �0.5 Yes Yes

Butyl Quinoleine sec 11.2 Weak 6d 56 2.0 4.4 Yes No

Farnesal 11.7 Weak 36.7b 108 2.9 5.78 Yes Yes

a-Hexyl cinnamic aldehyde 12 Weak �0.3a 36 3.9 5.3 Yes Yes

Eugenol 13 Weak 54d 38 2.3 2 Yes Yes

1-Chlorooctadecane 16 Weak 3.4b > 1000 1.37 9.44 Yes Yes

Cosmone 16.4 Weak 6d > 1000 1.1 5.6 No No

Toscanol 16.7 Weak 0d > 1000 0.94 3.8 No No

Benzyl benzoate 17 Weak 0.2a 26 1.96 4 Yes Yes

Lyral 17.1 Weak 95d 98 4.6 2.1 Yes Yes

Phenyl benzoate 17.1 Weak 38.5b 193 3.6 3.04 Yes Yes

Benzyl cinnamate 18.4 Weak 0d 27 8.8 3.65 Yes Yes

Lilial 18.7 Weak 14a > 1000 1.1 4.2 Yes Yes

Super muguet 19.3 Weak 0d > 1000 0.95 3.6 Yes No

Estragole 20.2 Weak 38.5b 298 2.4 3.4 Yes Yes

Cinnamic alcohol 21 Weak 11d 309 2.1 1.7 Yes Yes

Cyclamen aldehyde 22.3 Weak 59.9b 56 1.8 4 Yes Yes

Hydroxycitronellal 23 Weak 46.7b > 1000 0.9 1.54 Yes Yes

Imidazolidinyl urea 24 Weak 46.1b > 1000 1.3 �8 Yes Yes

5-Methyl-2,3-hexanedione 26 Weak 25.8a 494.0 2.8 0.06 Yes Yes

Serenolide 27.8 Weak 11d > 1000 1.1 3.8 No No

Evernyl 28.1 Weak 100d > 1000 1.5e 2.1 No No

Ambrettolide 28.8 Weak 8d > 1000 0.8 6 No No

Penicillin G 30 Weak 18.5b > 1000 1.4 1.8 Yes No

Butyl glycidyl ether 31 Weak 84.8b 71.8 12.6 0.63 Yes Yes

Benzocaine > 50 Weak 11.6b 51 3.0 1.8 Yes Yes

Linalool 30 V.Weak/None 2d > 1000 1.1 3.3 Yes Yes

Superfix 43.3 V.Weak/None 13d > 1000 1.2 5.91 No No

Isopropyl myristate 44 V.Weak/None 0.8a > 1000 1.0 > 6 No Yes

Cydrane 54.8 V.Weak/None 9 > 1000 1.1 4.24 No No

Geraniol 57 V.Weak/None 0d > 1000 1.3 3.3 Yes Yes

trans-2-Hexenol 60 V.Weak/None 18d 294 1.51 3.9 Yes No

Pyridine 72 V.Weak/None 10d > 1000 1.1 0.7 Yes Yes

Benzalkonium chloride False-pos. Nonsensitizer �6.8c 1.7 1.7 n.a. n.a. n.a.

Diethyl phthalate > 100 V.Weak/None 0.8a 614 1.9 2.47 No Yes

Propylene glycol > 100 V.Weak/None �0.9a > 1000 1.0 �0.92 No Yes

Glycerol > 100 V.Weak/None �3.8a > 1000 1.1 �1.5 No Yes

Methyl salicylate > 20 V.Weak/None 0.3a > 1000 1.1 2.2 No Yes

Benzoic acid > 20 V.Weak/None 0b > 1000 1.0 1.9 No No

1-Butanol > 20 V.Weak/None 2.2b > 1000 1.1 0.84 No Yes

6-Methyl-coumarin > 25 V.Weak/None 3.6b 69 4.4 2.06 No Yes

4-Hydroxybenzoic acid > 25 V.Weak/None 0b > 1000 1.2 1.39 No Yes

Lactic acid > 25 V.Weak/None 2.5b > 1000 1.1 �0.65 No Yes

Salicylic acid > 25 V.Weak/None 4a > 1000 1.1 2.26 No Yes

Sulphanilic acid > 25 V.Weak/None 3.3b > 1000 1.0 �2 Yes Yes

Benzaldehyde > 25 V.Weak/None 7b > 1000 1.1 1.48 No Yes

Ethylene brassylate > 30 V.Weak/None 0d > 1000 1.1 4.7 No No

Calone > 30 V.Weak/None 4d > 1000 1.3 1.2 No No

Hedione > 40 V.Weak/None 4d > 1000 1.1 3.1 Yes Yes

Methyl paraben > 50 V.Weak/None 3.6a 234 2.5 1.7 No Yes

Propylparaben > 50 Nonsensitizer 8a 35 2.4 2.98 No Yes

Octanoic acid > 50 V.Weak/None 0.04b > 1000 1.2 3 No Yes

Isopropanol > 50 V.Weak/None 0.3b > 1000 1.1 0.05 No Yes

Vanillin > 50 V.Weak/None 3.2a > 1000 1.2 0.1 Yes Yes

Phenyl ethyl alcohol > 50 V.Weak/None 4d > 1000 1.1 1.36 No Yes
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Peptide reactivity assay. Peptide reactivity with the Cys-containing

peptide Ac-RFAACAA was determined as described by Gerberick et al.

(2004b). Further peptide reactivity data were taken from the publications of

Gerberick et al. (2007b) and from Natsch et al. (2007). The data in this latter

publication were obtained with a slightly modified method (0.25mM test

peptide instead of 0.5mM to reduce peptide precipitation), however, results on

the same chemicals obtained under these conditions and the original conditions

are very comparable, and thus were used for this combined analysis. All the

data (both our own and literature data) are based on triplicate analysis

(Gerberick et al., 2007b).

Computer modeling and statistics. cLogP values were obtained either from

internal data (measured values according to OECD guideline 117) or calculated

using KOWWIN V.1.67 obtained from the United States Environmental

Protection Agency (U.S. EPA) web site. The TIMES SS software (V.2.25.7)

was obtained from OASIS Laboratory of Mathematical Chemistry, Bourgas,

Bulgaria, and run using the skin sensitization metabolism activated toxicity

model. Regression analysis and plotting of Box plots were performed with the

Minitab statistical software (Minitab Inc., version 15.1.1.0, Coventry, UK).

RESULTS

Compilation of the In Vitro and In Silico Data

Table 1 lists the following parameters for each test chemical:

(1) LLNA value, (2) Cys-peptide depletion in %, (3) EC 1.5

from the ARE assay, indicating the concentration for 1.5 fold

stimulation of gene activity, (4) Imax indicating maximal

induction of gene activity in the ARE assay, (5), cLogP value,

(6) prediction (yes/no) from the TIMES SS software, and (7)

whether the compound was in the training set of TIMES SS.

More detailed results with the structural domain assignments and

the detailed prediction from TIMES SS are given in the

supplementary information Table SII. Peptide reactivity data are

only listed as reactivity toward a Cys-containing peptide. In the

original assay (Gerberick et al., 2004b, 2007b) reactivity with

a Lys-peptide at a high pH is also scored. This certainly gives

additional information, however, in the published dataset there

are only two compounds (phthalic anhydride and trimellitic

anhydride) exclusively reactive with the Lys-peptide. Because

the Lys-peptide assay involves a large concentration of test

compound (25mM) there are solubility issues with many of the

hydrophobic compounds included in our current study and not

all chemicals were measured with the Lys-assay. We therefore

limit the information in this paper to Cys-peptide reactivity.

Classification of the Test Results into Scores

The data in Table 1 were transformed to scores as proposed

by Jowsey et al. (2006). A score from 0 to 4 was given for Cys-

reactivity, ARE EC 1.5, ARE Imax and LLNA EC3 according

to the thresholds and boundaries set in Table 2. The thresholds

for rating a molecule as > 0 in an in vitro test are derived from

the values needed for significant results in the tests. Thus at

least 15% peptide depletion is needed to be significant in most

cases. Similarly in the ARE assay, the stimulation must be

> 1.5-fold and the EC 1.5 below 1000lM (Natsch and Emter,

2008) in order to rate a chemical positive. The thresholds for

the scores 1–4 were then assigned in order to span the whole

dynamic range of the test results (see Tables 1 and 2). The

scores for the LLNA class are based on the classification of

Kimber et al. (2003). The scores resulting from this trans-

formation and a simple qualitative discussion for the individual

chemicals are summarized in Table 3. We had shown, that both

the Imax and the EC 1.5 value from the ARE assay are

correlated to the potency of a chemical (Natsch and Emter,

2008). To summarize the data from the two ARE-based

measures, an average of the score for Imax and EC 1.5 was

therefore also calculated and included in Table 3.

TABLE 1—Continued

Test chemicals

LLNA data

Cys-depletion (%)

Luciferase induction

cLogP

TIMES SS modeling

EC3 (%) Class ARE EC 1.5 (lM) ARE Imax Prediction Training set?

Benzyl alcohol > 50 V.Weak/None 6d > 1000 1.0 1.03 No Yes

Benzenesulfonic acid n.a. Nonsensitizer 0b > 1000 1.2 �1.17 No No

SDS False-pos. Nonsensitizer 7.2c > 1000 1.2 1.69 No Yes

Note. DNCB, 2,4,dinitro-chloro-benzene; SDS, sodium dodecyl sulfate.
aLiterature data from Gerberick et al. (2007b).
bInternal unpublished data, assay as in Gerberick et al. (2007b).
cInternal data, fluorescent detection of peptide depletion used.
dInternal data published in Natsch et al. (2007), with modified method.
eNonsignificant result, rated zero in Table 3.
fNot applicable.

TABLE 2

Set Boundaries for Assigning Scores to the Chemicals

Score

LLNA

(EC3 in %)a
Peptide reactivity

(% depletion)

EC 1.5 in ARE

assay (lM)

Imax in ARE assay

(fold stimulation)

0 > 30 < 15 > 1000 < 1.5

1 10–30 15–40 100–1000 1.5–3.0

2 1–10 40–65 25–100 3.0–6.0

3 0.1–1 65–90 6.25–25 6.0–12.0

4 < 0.1 > 90 < 6.25 > 12

Note. SDS, sodium dodecyl sulfate.
aFor the chemicals benzocaine, SDS, benezensulfonic acid, the ranking was

performed based on human experience or guinea pig tests.
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From an inspection of Table 3 and the discussion in the last

column, it is obvious, that for many chemicals the Cys-

reactivity and the cell-based assay give congruent results,

which is also supported by the TIMES SS prediction, but there

are also chemicals which are rated positive by only one of the

in vitro tests, or which are correctly predicted either by the

in vitro or the in silico prediction only.

Jowsey et al. (2006) proposed that an additional score of 1 or

2 is given depending on the bioavailability. As discussed

below, there is no good published model to rate bioavailability

form a hydrophobic test vehicle such as the one used in the

LLNA. Therefore a very conservative approach was taken,

simplifying bioavailability by giving a score of 2 to any

chemical having a cLogP between �2 and 5, and a score of 1

for chemicals outside of this range. (Human in vitro skin

absorption experiments with a series of unrelated chemicals

have determined that the optimum cLogP for maximum

absorption is 2, with rapid loss of absorption at Log P value

either side; Smith and Hotchkiss, 2001.)

For the in silico prediction a score of 1 or 2 (also as proposed

by Jowsey et al., 2006) for a predicted nonsensitizer or

sensitizer, respectively, was given according to the prediction

from TIMES SS (Table 3). It should be kept in mind, that these

latter data are somewhat biased, as a large fraction of the

chemicals were in the training set, and for any in silico
prediction, the true validity can only be determined with

external test data.

Cooper Statistics for the Individual Tests

Before integration of the data, Cooper statistics (Cooper

et al., 1979) were calculated for this complete dataset for the

two individual in vitro tests. With peptide depletion > 15% as

a positive result, the sensitivity of the Cys-peptide depletion

assay is 73.8%, the specificity is 96.9%, positive predictivity is

98.4%, negative predictivity is 58.5%, and the overall accuracy

is 80.2% for these 116 chemicals. With the threshold of 1.5-

fold luciferase induction in the ARE assay, the sensitivity of

the cell-based assay is 78.9%, the specificity is 81.3%, the

positive predictivity is 91.7%, the negative predictivity is

59.1%, and the accuracy is 79.3%.

Data Integration According to the Scheme Proposed by
Jowsey et al.: Multiplication of Scores

In a first attempt of data integration we directly multiplied

the scores from the individual tests to calculate a combined

score according to Jowsey et al. (2006). This is called the ISP

(index of sensitization) in the original proposal, and as

proposed we multiplied the scores from the two in vitro tests

with the in silico and bioavailability score. The difference to

the original proposal is that here we have only one cell-based

assay available and not yet a battery of two assays and of

course the ARE-based assay is not really a dendritic cell

activation assay. A Box plot of the resulting scores is shown in

Figure 1, split up for the different sensitization classes. The

individual data are included in the column ‘‘multiplied scores’’
of Table 3. The Cooper statistics are given in Table 4. It is

evident, that this combination of the data yields a very high

positive predictivity and a high specificity (96.9%): In the

original proposal, a chemical needs to be positive in all the

in vitro assays to be rated as a sensitizer, failure to give

a detectable signal in any of three (here two) in vitro assays

would give a rating as a nonsensitizer (ISP ¼ 0). The downside

of the high specificity of this integration scheme is also shown

by this data compilation: For several chemicals only one assay

yields a positive result, and therefore the sensitivity, negative

predictivity, and thus the overall accuracy are not satisfying

with this scheme (Table 4).

In terms of predicting potency, there is clearly a relationship

between higher scores and higher sensitization potential of the

chemicals as seen in Figure 1. However, calculating the R2 for

a linear correlation for all the 116 single chemicals gives only

a value of 0.423, and from Figure 1 it is obvious that the data

within one sensitization class are very much scattered. The

Spearman rank correlation is highly significant with a co-

efficient d for this data evaluation of 0.70.

Data Integration with an Alternative Proposal: Average
Scores from Different In Vitro Tests

Calculating the product of the scores from the individual

assessments as in the original proposal is one option to

combine the data. A very simple and intuitive alternative is to

take the average of the scores from the different in vitro tests

and directly relate these average scores to the scores from the

LLNA. This was first done only with the two in vitro assays,

peptide reactivity and ARE induction (taking the average score

for EC 1.5 and Imax). The results from this evaluation are

summarized in Figure 2 and the individual data are included in

Table 3 in the column ‘‘average scores.’’

Potency prediction. Indeed, as illustrated in Figure 2, there

is quite a good linear relationship between the median of the

scores for the chemicals within one class and the score of that

particular LLNA class (compare the median values in the Box

plots to the LLNA scores of the corresponding class).

However, as illustrated in this Box plot, there is still a quite

broad distribution of the data with a large interquartile range,

especially for the moderate sensitizers covering a broad range

of the plot. If calculating the linear correlation for all the single

values, the R2 is 0.518. The Spearman rank correlation

coefficient d is 0.758. Alternatively, the same calculations

were made with only the EC 1.5 score from the ARE assay

(instead of the average score between EC 1.5 and Imax) and

very similar results are obtained (the linear correlation

coefficient was 0.516 instead 0.518) and the Spearman rank

correlation is 0.755, indicating that EC 1.5 maybe a sufficient

indicator from the ARE assay.
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TABLE 3

Data from Table 1 Transformed to Scores for the Single Chemicals and Interpretation of the Results

Generic name LLNA Cys Dpl.

ARE induction

Prediction 2/1b CLogP 2/1c
Average

scoresd
Multiplied

scoree ObservationfEC 1.5 Imax Avga

Extreme sensitizers

Diphenylcyclopropenone 4 4 4 4 4 2 2 4 64 Peptide, ARE, and TIMES SS concur

Oxazolone 4 3 1 1 1 2 2 2 12 Peptide, ARE, and TIMES SS concur

5-Chloro-2-methyl-4-isothiazolin-3-one 4 4 4 3 3.5 2 2 3.75 56 Peptide, ARE, and TIMES SS concur

p-Benzochinone 4 4 4 4 4 2 2 4 64 Peptide, ARE, and TIMES SS concur

DNCB 4 4 4 4 4 2 2 4 64 Peptide, ARE, and TIMES SS concur

4-nitrobenzylbromide 4 4 4 3 3.5 2 2 3.75 56 Peptide, ARE, and TIMES SS concur

Strong sensitizers

1,4-Hydrochinone 3 3 4 4 4 2 2 3.5 48 Peptide, ARE, and TIMES SS concur

Glutaraldehyde 3 1 3 4 3.5 2 2 2.25 14 Peptide, ARE, and TIMES SS concur;

Lys-peptide would be better predictor

Fluorescein-5-isothiocyanate 3 4 1 1 1 2 2 2.5 16 Peptide, ARE, and TIMES SS concur

Phthalic anhydride 3 0 0 0 0 2 2 0 0 ARE and peptide false negative,

Lys-peptide would be correct predictor.

TIMES SS correct.

1,4-Phenylenediamine 3 4 3 4 3.5 2 2 3.75 56 Peptide, ARE, and TIMES SS concur

Benzyl bromide 3 4 2 3 2.5 2 2 3.25 40 Peptide, ARE, and TIMES SS concur

Lauryl gallate 3 4 4 1 2.5 2 1 3.25 20 Peptide, ARE, and TIMES SS concur

Propyl gallate 3 2 4 3 3.5 2 2 2.75 28 Peptide, ARE, and TIMES SS concur

2-Aminophenol 3 4 4 4 4 2 2 4 64 Peptide, ARE, and TIMES SS concur

Trimellitic anhydride 3 0 0 0 0 2 2 0 0 ARE and peptide false negative. TIMES

SS correct.

Formaldehyde 3 2 2 2 2 2 2 2 16 Peptide, ARE, and TIMES SS concur

Metol 3 4 4 4 4 2 2 4 64 Peptide, ARE, and TIMES SS concur

Moderate sensitizers

Methyldibromo glutaronitrile 2 3 3 1 2 2 2 2.5 24 Peptide, ARE, and TIMES SS concur

1-Phenyl-1,2-propanedione 2 4 1 4 2.5 2 2 3.25 40 Peptide, ARE, and TIMES SS concur

1-Naphthol 2 1 3 1 2 1 2 1.5 4 Peptide and ARE concur. TIMES SS

false negative.

Glyoxal 2 4 1 2 1.5 2 2 2.75 24 Peptide, ARE, and TIMES SS concur

2-Hydroxy-ethyl-acrylate 2 3 4 4 4 2 2 3.5 48 Peptide, ARE, and TIMES SS concur

4-Vinyl-pyridine 2 4 4 4 4 2 2 4 64 Peptide, ARE, and TIMES SS concur

Pomarose 2 4 4 4 4 2 2 4 64 Peptide, ARE, and TIMES SS concur

2-Mercaptobenzothiazol 2 4 2 3 2.5 2 2 3.25 40 Peptide, ARE, and TIMES SS concur

Isoeugenol 2 4 3 4 3.5 2 2 3.75 56 Peptide, ARE, and TIMES SS concur

2-Methyl-2H-isothiazolin-3-one 2 4 4 4 4 2 2 4 64 Peptide, ARE, and TIMES SS concur

Diethyl maleate 2 4 4 4 4 2 2 4 64 Peptide, ARE, and TIMES SS concur

Ethylenediamine 2 0 0 0 0 2 2 0 0 ARE and Peptide false negative—requires

metabolism?

3-Dimethyl-amino-1-propylamine 2 0 1 2 1.5 2 2 0.75 0 ARE and TIMES SS concur. Peptide false

negative—requires metabolism?

Spirogalbanone 2 4 2 4 3 2 1 3.5 24 Peptide, ARE, and TIMES SS concur

1,2-Benzisothiazolin-3-one 2 4 4 3 3.5 2 2 3.75 56 Peptide, ARE, and TIMES SS concur

Methyl 2-nonynoate 2 4 4 4 4 2 2 4 64 Peptide, ARE, and TIMES SS concur

trans-2-Decenal 2 4 2 3 2.5 2 2 3.25 40 Peptide, ARE, and TIMES SS concur
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trans-Anethole 2 1 0 0 0 1 2 0.5 0 Peptide concurs with LLNA. ARE and

TIMES SS false negative

Benzyl salicylate 2 0 3 2 2.5 1 2 1.25 0 ARE concurs with LLNA. TIMES SS

and peptide false negative.

Phenylacetaldehyde 2 2 2 3 2.5 2 2 2.25 20 Peptide, ARE, and TIMES SS concur

Galbanone 2 3 3 3 3 2 2 3 36 Peptide, ARE, and TIMES SS concur

Cinnamic aldehyde 2 4 3 4 3.5 2 2 3.75 56 Peptide, ARE, and TIMES SS concur

3-Aminophenol 2 0 2 2 2 2 2 1 0 ARE and TIMES SS concur. Peptide false

negative—requires metabolism?

Diethyl sulfate 2 1 0 0 0 2 2 0.5 0 ARE false negative, Peptide and TIMES

SS concur

2-Bromotetradecanoic acid 2 1 2 2 2 2 1 1.5 4 Peptide, ARE, and TIMES SS concur

Benzylideneacetone 2 4 3 4 3.5 2 2 3.75 56 Peptide, ARE, and TIMES SS concur

a-Methyl cinnamic aldehyde 2 0 2 4 3 2 2 1.5 0 ARE and TIMES SS concur. Peptide

false negative.

Citral 2 1 2 3 2.5 2 2 1.75 10 Peptide, ARE and TIMES SS concur

Tetramethylthiuram disulfide 2 4 4 2 3 2 2 3.5 48 Peptide, ARE and TIMES SS concur

trans-2-Hexenal 2 4 3 4 3.5 2 2 3.75 56 Peptide, ARE and TIMES SS concur

3,4-Dihydrocoumarin 2 0 0 0 0 2 2 0 0 ARE and peptide false negative.

TIMES SS correct—requires metabolism?

Creosol 2 1 0 0 0 2 2 0.5 0 ARE false negative, peptide borderline.

TIMES SS concurs. Requires metabolism?

Hydratropic aldehyde 2 2 1 1 1 2 2 1.5 8 Peptide, ARE, and TIMES SS concur

Cyclal C 2 4 1 3 2 2 2 3 32 Peptide, ARE, and TIMES SS concur

b-Damascone 2 4 4 4 4 2 2 4 64 Peptide, ARE, and TIMES SS concur

Dihydroeugenol 2 0 2 2 2 2 2 1 0 ARE and TIMES SS concur. Peptide false

negative—requires metabolism?

Safranal 2 4 3 4 3.5 2 2 3.75 56 Peptide, ARE, and TIMES SS concur

Perillaaldehyde 2 1 2 4 3 2 2 2 12 Peptide, ARE, and TIMES SS concur

Silvial 2 4 1 2 1.5 2 2 2.75 24 Peptide, ARE, and TIMES SS concur

Weak sensitizers

NiSO4 1 1 1 2 1.5 2 1.25 3 Peptide and ARE concur. Peptide precipitates

Diacetyl 1 3 1 2 1.5 2 2 2.25 18 Peptide, ARE, and TIMES SS concur

Butyl Quinoleine sec 1 0 2 1 1.5 2 2 0.75 0 ARE and TIMES SS concur. Peptide false

negative—requires metabolism?

Farnesal 1 1 1 1 1 2 1 1 2 Peptide, ARE, and TIMES SS concur

a-Hexyl cinnamic aldehyde 1 0 2 2 2 2 1 1 0 ARE and TIMES SS concur. Peptide

false negative

Eugenol 1 2 2 1 1.5 2 2 1.75 12 Peptide, ARE, and TIMES SS concur

1-Chlorooctadecane 1 0 0 0 0 2 1 0 0 ARE and peptide false negative—requires

metabolism or due to poor solubility?

Cosmone 1 0 0 0 0 1 1 0 0 ARE, peptide, and TIMES SS all predict

nonsensitizer. False positive in LLNA?

Toscanol 1 0 0 0 0 1 2 0 0 ARE, peptide, and TIMES SS all predict

nonsensitizer. False positive in LLNA?

Benzyl benzoate 1 0 2 1 1.5 2 2 0.75 0 ARE and TIMES SS concur. Peptide false

negative.

Lyral 1 4 2 2 2 2 2 3 32 Peptide, ARE, and TIMES SS concur

Phenyl benzoate 1 1 1 2 1.5 2 2 1.25 6 Peptide, ARE, and TIMES SS concur.

Benzyl cinnamate 1 0 2 3 2.5 2 2 1.25 0 ARE and TIMES SS concur. Peptide

false negative.
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TABLE 3—Continues

Generic name LLNA Cys Dpl.

ARE induction

Prediction 2/1b CLogP 2/1c

Average

scoresd

Multiplied

scoree ObservationfEC 1.5 Imax Avga

Lilial 1 0 0 0 0 2 2 0 0 ARE and peptide false negative

Super muguet 1 0 0 0 0 2 2 0 0 Peptide and ARE negative. False positive

in LLNA or requires metabolism?

Estragole 1 1 1 1 1 2 2 1 4 Peptide, ARE, and TIMES SS concur

Cinnamic alcohol 1 0 1 1 1 2 2 0.5 0 ARE and TIMES SS concur. Peptide

false negative.

Cyclamen aldehyde 1 2 2 1 1.5 2 2 1.75 12 Peptide, ARE, and TIMES SS concur

Hydroxycitronellal 1 2 0 0 0 2 2 1 0 Peptide and TIMES SS concur. ARE

false negative.

Imidazolidinyl urea 1 2 0 0 0 2 1 1 0 Peptide and TIMES SS concur. ARE

false negative.

5-Methyl-2,3-hexanedione 1 1 1 1 1 2 2 1 4 Peptide, ARE, and TIMES SS concur

Serenolide 1 0 0 0 0 1 2 0 0 ARE, peptide and TIMES SS all predict

nonsensitizer. False positive in LLNA?

Evernyl 1 4 0 0 0 1 2 2.25 4 Peptide concurs with LLNA. ARE and

TIMES SS false negative

Ambrettolide 1 0 0 0 0 1 1 0 0 ARE, peptide, and TIMES SS all predict

nonsensitizer. False positive in LLNA?

Penicillin G 1 1 0 0 0 2 2 0.5 0 Peptide and TIMES SS concur, ARE false

negative, peptide borderline

Butyl glycidyl ether 1 3 2 4 3 2 2 3 36 Peptide, ARE, and TIMES SS concur

Benzocaine 1 0 2 2 2 2 2 1 0 ARE and TIMES SS concur. Peptide

false negative. LLNA known to be

variable/false negative.

V. weak/nonsensitizers

Linalool 0 0 0 0 0 2 2 0 0 Peptide and ARE concur. TIMES incorrect?

Superfix 0 0 0 0 0 1 1 0 0 ARE, peptide, and TIMES SS concur

Isopropyl myristate 0 0 0 0 0 1 1 0 0 ARE, peptide, and TIMES SS concur

Cydrane 0 0 0 0 0 1 2 0 0 ARE, peptide, and TIMES SS concur

Geraniol 0 0 0 0 0 2 2 0 0 ARE and peptide concur. TIMES false positive

trans-2-Hexenol 0 1 1 1 1 2 2 1 4 Peptide and ARE false positive or LLNA

false negative due to very high volatility

Pyridine 0 0 0 0 0 2 2 0 0 ARE and peptide concur. TIMES false positive

Benzalkonium chloride 0 0 4 1 2.5 1 1 1.25 0 Peptide and TIMES SS concur. ARE false

positive with unclear dose-response

Diethyl phthalate 0 0 1 1 1 1 2 0.5 0 Peptide and TIMES SS concur. ARE false positive

(borderline)

Propylene glycol 0 0 0 0 0 1 2 0 0 ARE, peptide, and TIMES SS concur

Glycerol 0 0 0 0 0 1 2 0 0 ARE, peptide, and TIMES SS concur

Methyl salicylate 0 0 0 0 0 1 2 0 0 ARE, peptide, and TIMES SS concur

Benzoic acid 0 0 0 0 0 1 2 0 0 ARE, peptide, and TIMES SS concur

1-Butanol 0 0 0 0 0 1 2 0 0 ARE, peptide, and TIMES SS concur

6-Methyl-coumarin 0 0 2 2 2 1 2 1 0 Peptide and TIMES SS concur. ARE false

positive

4-Hydroxybenzoic acid 0 0 0 0 0 1 2 0 0 ARE, peptide, and TIMES SS concur

Lactic acid 0 0 0 0 0 1 2 0 0 ARE, peptide, and TIMES SS concur

Salicylic acid 0 0 0 0 0 1 2 0 0 ARE, peptide, and TIMES SS concur
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Cooper statistics. The Cooper statistics were calculated

from the data obtained with average scores from the two

in vitro tests (Table 5). One possible option is to rate any

chemical positive, which has an average in vitro score > 0. In

this case the underlying rationale is that any compound which

is rated positive by either the peptide reactivity assay OR by the

ARE assay is a potential sensitizer. This approach gives

a relatively high sensitivity (86.9%), as most sensitizers were

positive in at least one of the tests. The overall accuracy is

85.3%. (Another option would be to rate any chemical with

a score above 0.5 as a sensitizer: In this case the lowest score

(1) in one of the test and a negative test result in the second test

would be regarded as not sufficient evidence for the rating of

a chemical as a sensitizer. But either a moderate score (2) in

one of the tests or a weak score (1) in two tests would be

considered enough evidence for rating a chemical as

a sensitizer. With this specific calculation sensitivity is

81.0%, specificity is 87.5%, positive predictivity is 94.4%,

negative predictivity is 63.6%, and accuracy is 82.8%.)

False positives and false negatives. At this stage, it may be

appropriate to discuss the false positives and false negatives

resulting from this approach with average scores and this is

summarized in Table 6. For several compounds, there is

substantial evidence that the wrong assignment could be due to

a false positive or false negative LLNA result. Thus, if (1) the

four compounds ambrettolide, serenolide, cosmone, and

toscanol which all have no structural alert and which gave

clear irritation reaction in the LLNA (see Table 6) would be

rated as false positives in the LLNA, and (2) the human

evidence would overrule the LLNA data for the parabens, then

the accuracy of the data in Table 5 would be 90.5%. Such

corrections post hoc are certainly critical, and it will be

important for future validation studies to select a large array of

test chemicals excluding such ambiguous compounds.

Cooper statistics versus human data. Finally, the Cooper

statistics with this model (as in Table 5, averagescore>0 indicating

sensitizers) were also calculated for the 45 compounds for which

unambiguous human data are available (as summarized in Table

SV in the supplementary information and mainly taken from the

LLNA validation study of Basketter et al., 1999). For this subset

of chemicals, the Cooper statistics against human evidence are:

Sensitivity, 97.1%, Specificity, 81.8%, positive predictivity,

94.3%, negative predictivity, 90.0%, and accuracy 93.3%.

The Effect of Integrating cLogP as a Surrogate for
Bioavailability in the Model with Average Scores

We have further tried to refine the data obtained by the

model with average scores by integration of cLogP. Two

models were tried:

1. The score for any molecule with a cLogP < �2 or > 5 was

reduced by 0.5 to account for the potentially low bio-

availability.
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2. As above, and in addition the score for chemicals with

a cLogP > �0.5 and < 3 was enhanced by 0.5 to account

for the potentially higher bioavailability of these chemicals.

These refined scores were then used again for linear

correlation analysis. Interestingly, the correlation coefficient

R2 was reduced from 0.518 without correction to 0.515 with

the model (1) and to 0.489 with the model (2). Also the

Spearman correlation coefficients were reduced from 0.758 to

0.748/0.696. If correcting the scores even more (by 1 instead of

0.5, and with the same boundaries set), the correlation was

further reduced to 0.502 and 0.428 with the two models. The

Spearman rank correlations became 0.746/0.686, thus with all

this corrections for a cLogP outside the optimal range, the

correlation and thus the predictivity of the model is reduced.

Integrating the Predictions from TIMES SS in the Model with
Average Scores

In the Jowsey et al. (2006) proposal a yes/no scoring for

structural alerts was included, increasing the scores for any

chemical with a known structural alert by a factor of two.

A knowledge-based approach based on established reaction

mechanisms for skin sensitizers is certainly valuable to refine

the in vitro predictions and it may especially help to correct for

weak false positives in in vitro tests. In a weight-of-evidence

based approach, one may suggest, that more convincing

in vitro evidence is needed for a molecule to be rated positive

in the complete absence of structural alerts, whereas a molecule

with clear structural alerts will be rated positive even if the

in vitro evidence is somewhat weaker. We have therefore used

the TIMES SS model, and we subtracted a value of 1 from

the score of any chemical which is not rated as a sensitizer by

the TIMES SS model: Thus any chemical not predicted to be

a sensitizer by TIMES SS but rated positive by the in vitro tests

is put into the next lower class, and a chemical with weak

in vitro prediction and no alert becomes a nonsensitizer. The

FIG. 2. Chemical classification using the average of the scores from two

in vitro tests. A Box plot with the interquartile range is given and the median is

indicated and connected with a line.

TABLE 5

Summary Results and Cooper Statistics for the Alternative

Model with Average Scores, Rating Each Chemical with a Score

> 0 as a Sensitizer

Predicted classification

Nonsensitizer Sensitizer Total

Chemical classification Nonsensitizer 26 6 32

Sensitizer 11 73 84

Total 36 80 116

Sensitivity 86.9%

Specificity 81.3%

Positive predictivity 92.4%

Negative predictivity 70.3%

Accuracy 85.3%

FIG. 1. Chemical classification using the original model of Jowsey et al.
(2006) with the product of individual scores. A Box plot with the interquartile

range is given and the median is indicated and connected with a line.

TABLE 4

Summary Results and Cooper Statistics for the Model with

Multiplied Scores

Predicted classification

Nonsensitizer Sensitizer Total

Chemical data classification Nonsensitizer 31 1 32

Sensitizer 28 56 84

Total 59 57 116

Sensitivity 66.7%

Specificity 96.9%

Positive predictivity 98.2%

Negative predictivity 52.5%

Accuracy 75.0%
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resulting data were then corrected by setting any negative value

to zero (i.e., a compound not predicted as sensitizer by both

TIMES SS and in vitro data keeps its score 0 and does not get

a negative value). The linear correlation coefficient for this

corrected sensitizations score is now slightly increased form

0.518 to 0.525, and the Spearman coefficient is increased from

0.758 to 0.769. The Cooper statistics after this correction are

shown in Table 7. The accuracy is clearly improved to 87.9%,

due to the reduction of false positives from in vitro tests, as

noted in footnote to Table 6. This approach, with results

integrated from the two in vitro assays and refined with the

result from the in silico prediction model, give clearly an

enhanced accuracy as compared with the accuracy obtained

from the single in vitro tests.

A Further Alternative Calculation: Regression Analysis

In the calculations above, we have followed a very intuitive

and not profoundly mathematical approach of data integration,

based on and modified from the widely cited proposal of

Jowsey et al.: Assigning scores to the individual test results and

combining them together with a simple intuitive calculation

(which is not based on an empirical mathematical model) to get

a final score. However, a very classical mathematical approach

of data integration from multiple endpoints is regression

analysis. We have therefore further analyzed the data with

regression analysis of LLNA class versus the in vitro data.

First, regression of LLNA class versus log EC 1.5, log Imax,

Peptide depletion in % and cLogP was performed. This

resulted in the following regression equation and statistics:

LLNA Class ¼ 1:2� 0:011 clogPþ 0:053 log Imax

� 0:383 log EC 1:5þ 0:010CysDpl: ð1Þ

The standard error, and T and p values for the predictors in

this equation are

Constant: SE ¼ 0.455, T ¼ 3.99, p < 0.0005

clogP: SE ¼ 0.036, T ¼ �0.30, p ¼ 0.765

logImax: SE ¼ 0.287, T ¼ 0.18, p ¼ 0.855

log EC 1.5: SE ¼ 0.133, T ¼ �2.87, p ¼ 0.005

CysDpl.: SE ¼ 0.0029, T ¼ 3.56, p ¼ 0.001

S ¼ 0.817, F ¼ 27.8, R2 ¼ 51.0%

logImax apparently had no significant influence, and re-

peating the analysis without this parameter gave a similar

equation with improved statistical parameters (see Equation 1b

in the Supplementary Information). cLogP had also no

significant influence and removing this parameter resulted in

a similar and simplified equation (Equation 1c in the

Supplementary Information). (Note. a logarithmic metric also

for the peptide reactivity result such as measuring amount of

reaction as log (100 - depletion) may appear a more appropriate

parameter for regression analysis but did not result in an

improved regression model).

Regression analysis was also performed based on the scores

attributed to the raw data according to Table 2. The regression

line for this analysis was forced through zero, based on the

rationale that, without any other evidence from an in vitro test,

a chemical is rated as zero/nonsensitizer (whereas calculating

a regression with an y-intercept would automatically attribute

to each chemical a certain minimal sensitization class). In this

analysis, again, EC 1.5 had a significant influence, but the

TABLE 6

Discussion of False Positives and False Negatives in Table 5

Generic name Discussion

False negatives

Phthalic anhydride Negative in both assays, would be rated positive

with inclusion of a Lys-containing peptide in

reactivity assay

Trimellitic anhydride Negative in both assays, rapid hydrolysis in any

aqueous test system proposed by Mitjans et al.

(2008)

3,4-Dihydrocoumarin No explanation

1-Chlorooctadecane Highly hydrophobic compound, not soluble in

assay solution for peptide reactivity and

culture media

Cosmone Putative false positive in LLNA, no structural

alert, Slight to moderate persistent erythema

seen on ear at top dose in LLNA (25%).

Toscanol Putative false positive in LLNA, Severe ear

swelling and erythema seen at 10% and

100% dose groups. Irritant in rabbits at 100%

Lilial No explanation

Super muguet Putative prohapten?

Serenolide Putative false positive in LLNA, slight ear

swelling and erythema seen at 30 and 50%

dose groups. Mild irritant in rabbits at 100%

Ambrettolide Putative false positive in LLNA, EC3 ¼ 28.8%,

borderline, moderate swelling and persistent

erythema seen at 100%

Ethylenediamine Putative prohapten?

False positives

trans-2-Hexenol Clear structural alert as prohapten, Putative

false negative in LLNA due to very high

volatility. LLNA would need to be done

occluded. Rapid evaporation from LLNA

vehicle of trans-2-Hexenal, > 95% lost

within 10 min (our unpublished data).

Benzalkonium chloride No clear explanation for observed ARE

induction, borderline result, with

Imax ¼ 1.7, close to threshold

Diethyl phthalatea No clear explanation for observed weak

ARE induction (Imax ¼ 1.9) at maximal test

concentration (1000lM), borderline result,

due to impurity?

6-Methyl-coumarina No explanation for observed ARE induction

Methyl parabena Putative false negative in LLNA, sensitization

reactions in humans reported

Propylparabena Putative false negative in LLNA, sensitization

reactions in humans reported

aFor these compounds the false positive result is corrected, if the correction

for negative prediction by TIMES-SS is included as discussed below and

summarized in Table 7.
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effect of Imax was low and nonsignificant, underlining the

notion that the EC 1.5 value is the key predictor from the ARE

assay (see Equation 2b in Supplementary Information).

Therefore, only the results for regression with the EC 1.5

score, the Cys-depletion score and cLogP are given below in

Equation 2:

LLNA Class ¼ 0:319Cys Scoreþ 0:376 EC 1:5 Score

þ 0:084 clogP
ð2Þ

The standard error, and T and p values for the predictors in

this equation are

cLogP: SE ¼ 0.0315, T ¼ 2.66, p ¼ 0.009

EC 1.5 Score: SE ¼ 0.075, T ¼ 4.92, p < 0.0005

Cys Score: SE ¼ 0.065, T ¼ 4.90, p < 0.0005

S ¼ 0.871, F ¼ 132.9

Repeating this analysis without cLogP yielded the following

result:

LLNA Class ¼ 0:357Cys Scoreþ 0:391 EC 1:5 Score ð3Þ

The standard error, and T and p values for the predictors in

this equation are

EC 1.5 Score: SE ¼ 0.071, T ¼ 5.53, p < 0.0005

Cys Score: SE ¼ 0.064, T ¼ 5.48, p < 0.0005

S ¼ 0.896, F ¼ 183.76

Both by directly analyzing the raw data (Equation 1) or by

using the scores (Equations 2 and 3), it is clear that both the

Cys-depletion and the EC 1.5 similarly (the coefficients are

indeed similar in Equations 2 and 3!) and highly significantly

contribute to the prediction of the sensitization potential class,

but the cLogP has negligible influence in the analysis of the

raw data and a small influence in Equation 2. This nicely

confirms the more intuitive approach of data evaluation chosen

above, which had shown that an arithmetic combination

(calculating averages) of the scores form both in vitro tests

without integrating cLogP yields the best prediction. Indeed,

the intuitive, nonempirical model with average scores can be

expressed by Equation 4, which indeed is very similar to the

empirically calculated Equation 3:

LLNA Class ¼ 0:5Cys Scoreþ 0:5ARE Score ð4Þ

DISCUSSION

Here we have jointly reported data from two in vitro assays

and one in silico prediction model for a large set of chemicals

of known skin sensitization potential. These data are also

reported in an Excel format in the Supplementary information

to allow the scientific community to perform more sophisti-

cated calculations on them. Different ways of data integration

were explored and they are discussed below.

Multiplication of Scores versus Average of Scores

Starting from the proposal of Jowsey et al. (2006), we have

scored the data in classes and performed multiple calculations.

The original proposal rates a chemical positive only if it is

positive in all individual tests. A logical rationale behind this

approach is the assumption that a chemical must be able to

react with a protein AND stimulate dendritic cells AND

stimulate T-cell proliferation; these are all hurdles that must be

overcome to give the sensitization reaction.

Multiplication of the scores gives a high specificity: Indeed

all the chemicals positive in both assays are rated as sensitizers

by the LLNA, with 2-hexenol as the only false positive. With

2-hexenal being a moderate sensitizer, 2-hexenol may act as

prohapten. The negative result in the LLNA may be due to its

high volatility, which would explain it as a false negative in the

LLNA rather than false positive in vitro. On the other hand the

sensitivity of the approach with multiplication of scores is low,

with several sensitizers only recognized by one of the in vitro
test. This problem might be further enhanced if several cell-

based tests system with a limited sensitivity for weak

sensitizers will be combined.

A multiplication of the scores, as in the original proposal,

thus did not appear to be the most useful approach to integrate

the data. Calculating average scores from different tests is

another intuitive possibility and it gives a more transparent

view of the data. Whereas the original proposal is based on

a mechanistic approach (a chemical must overcome a series of

hurdles to sensitize), this data integration is based on a weight-

of-evidence approach: If in vitro results are sufficiently

indicative of sensitization, the chemical is scored positive.

This approach already allows for a better yes/no prediction of

TABLE 7

Summary Results and Cooper Statistics for the Alternative

Model with Average Scores Corrected for Negative TIMES SS

Predictions

Predicted classification

Nonsensitizer Sensitizer Total

Chemical classification Nonsensitizer 30 2 32

Sensitizer 12 72 84

Total 41 75 116

Sensitivity 85.7%

Specificity 93.8%

Positive predictivity 97.3%

Negative predictivity 71.4%

Accuracy 87.9%

Note. Rating each chemical with a score > 0 as a sensitizer.
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the skin sensitization potential, and on the average it gives

a good estimate of the sensitization potency (Fig. 2). However,

the prediction of potency is not yet satisfying at the level of the

individual chemical.

Regression Analysis instead of a Intuitive Data Integration

To evaluate the data in a more mathematical way, regression

analysis was used. Indeed regression analysis indicated that the

scores obtained from the two in vitro assays both highly

significantly contribute to the prediction of the sensitization

class. When performing the regression analysis with the two

in vitro scores only, the best regression statistics were obtained

(Equation 3), and interestingly this regression equation is very

close to the intuitive approach with average scores from the

tests (expressed by Equation 4). The regression analysis also

indicated that both assays similarly contribute to the prediction

(similar coefficients in Equations 2 and 3).

The Effect of cLogP

At present it is clear that chemicals with a wide range of

physicochemical properties can sufficiently gain access to the

viable epidermis in order to induce skin sensitization, with only

very hydrophilic or highly hydrophobic compounds having

a reduced sensitization potential (recently reviewed by Roberts

and Aptula, 2008). Classical data sets from skin penetration

studies contain penetration data from aqueous solution, but

both LLNA tests and cosmetic usage involve application of

chemicals either from an organic solvent or from mixed lipid/

surfactant/water systems. Thus classical skin penetration

models are of questionable value to predict the sensitization

situation. This is an area of much current research (reviewed by

Basketter et al., 2007). Nevertheless, cLogP has often been

shown to be a simple indicator correlating to bioavailability in

the skin, and thus attempts were made to integrate cLogP into

the prediction models. In the model with average scores,

a reduced final score was given for chemicals with cLogP

outside the range between �2 and 5, as chemicals outside this

range are considered to be less bioavailable. Yet using cLogP

with this intuitive approach to account for potentially different

bioavailability did reduce the correlation. This finding was also

confirmed by regression analysis, with cLogP making only

a small contribution to the overall regression equation.

Integrating the In Silico Prediction

In the original proposal, the in vitro score for any chemical

with a structural alert is doubled. In the model with average

scores we have taken a more conservative approach, by putting

each chemical without a structural alert into the next lower

sensitization class. With this knowledge-based approach,

absence of structural alerts reduces predicted sensitization

potential, but a known structural alert does not further enhance

the in vitro score: if in vitro tests rate a molecule a moderate

sensitizer, this classification is not changed by the mere fact

that this has also been predicted based on existing knowledge.

TIMES SS model was selected as the preferred model

because it incorporates structure-toxicity and structure-metab-

olism relationships through a number of transformations

simulating skin metabolism and interaction of the parent

molecule and reactive metabolites with skin proteins (Roberts

et al., 2007). Other models are available, including statistical

quantitative structure activity relationships such as TOPKAT

(Accelrys, San Diego, CA) and MCASE (Mulitcase, Inc.,

Beachwood, OH) or expert systems such a Derek for Windows

(LHASA Inc., Leeds, UK) which could also be investigated for

use in such a decision process.

Pooled or Separate Analysis of Different Structural Classes

Here we have combined all structural classes together for

a simple pooled data analysis. However, it has been argued,

that the evaluation of the sensitization potential should always

be done for ‘‘applicability domains’’ (Roberts et al., 2007b).

Indeed, if the data were analyzed for single classes, a more

refined result may be obtained. For example Michael acceptors

are rated quite high both with the ARE assay and with the Cys-

peptide reactivity (see Table 3) and therefore many moderate

chemicals in this structural class are rated as strong or extreme

with the generalized model, and this could be avoided with

a class-wise treatment of the data.

However, many structural classes contain only a low number

of chemicals and thus, a separate data interpretation model

cannot be developed. Another option is then to use the in vitro
data as a basis for read-across: The in vitro data of the novel

compound would directly be compared with the in vitro data of

the closest structural/mechanistic neighbors in the dataset in

order to make an informed rating. Only chemicals with no

structural relatives in the data set would be rated solely based

on a global model such as the ones presented here using the

scores from the in vitro data.

Selected Tests and Test Improvements

The peptide reactivity assay and the ARE assay were selected,

because for these tests the largest data sets are available and

because they give a quantitative read-out. Both tests have proven

to be valuable to rate a large number of chemicals and

combining the results already gives an improved prediction of

the sensitization risk. Yet both tests may still need refinement:

1. We had shown that depletion in the peptide reactivity assay

may be due to adduct formation or peptide oxidation (Natsch

et al., 2007). Although adduct formation with proteins is

considered a hallmark of the sensitization process, it is not

established whether the capacity of a chemical to catalyze

peptide oxidation is a relevant predictor for sensitization. A

test to discriminate between oxidizing and adduct forming

chemicals will be published shortly.

2. The ARE cell-based assay is based on a breast cancer cell

line. This test may already be sufficient, as the Nrf2/Keap1/
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ARE regulatory pathway is present in most or all cell types.

However, it might be possible to improve the test by using

cell types directly involved in the sensitization process.

Furthermore, as more data on the dendritic cell assays with

CD86 expression (such as the hCLAT test or the U-937 test;

Ade et al., 2006; Sakaguchi et al., 2006, in press) accumulate,

it will be interesting to repeat the current analysis with these

data to further analyze the contribution of these additional tests

for a more optimized prediction of the sensitization risk.

Finally, both in the current approach and in the original

proposal by Jowsey et al., no special attention is paid to

prohaptens. Without additional tests, prohaptens would need to

be metabolized and recognized directly within the cell-based

assay(s). Indeed several putative prohaptens (for example

dihydroeugenol) are positive in the ARE assay. Whether this is

sufficient, or whether a specific test for metabolic activation

needs to be added, will also need a careful assessment.

Further Research Directions

Along with refinements of these tests and the inclusion of

other tests and in silico models, also a refinement of the

calculations will be needed. Whether it is useful to use ordinal

data for classification or whether a direct regression analysis

based on raw data (e.g., inducing concentrations from cell-

based assays or kinetic constants from peptide reactivity) might

be a better choice needs to be further explored. Also a decision

tree approach, weighing the evidence from different in vitro
tests in a tiered approach, needs to be considered.

It will be important to include large chemical data sets to test

the validity of each single test and the validity of integration

from different tests and it is of special importance to perform

these validations on a standard list of real positives and real

negatives: As exemplified in Table 6, the LLNA results for

some compounds included in this study are questionable.

Because there is no such standard list, we included all our data

in the evaluation, and the fact that the dataset contained

borderline results certainly did deteriorate the Cooper statistics.

Even if the ultimate standardized tests and all the final data

sets are not yet available, we felt it timely to publish this first

integrated dataset and apply the calculations of the Jowsey

et al. proposal to the data in order that the discussion can

progress how data can be integrated in the ‘‘battery concept’’

for skin sensitization testing.

SUPPLEMENTARY DATA

Supplementary data are available online at http://toxsci.

oxfordjournals.org/.
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